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Vehicle automation has been in the works for a long time now. Automatic brakes, cruise control, 
GPS satellite navigation, etc. are all common features seen in today's automobiles. Automation 
and artificial intelligence breakthroughs are likely to lead to an increase in the usage of auto
mation technologies in cars. Because of this, mankind will be more reliant on computer-con
trolled equipment and car systems in our daily lives. All major corporations have begun investing 
in the development of self-driving cars because of the rapid advancement of advanced driver 
support technologies. However, the level of safety and trustworthiness is still questionable. 
Imagine what the assailants could do if they had access to a car. Control of braking, acceleration 
and even steering by an attacker can have disastrous results. Most of the assaults against au
tonomous vehicle software and hardware are covered in this study, along with their prospective 
consequences. This work explores an extended analysis of the security threat and cyber-attacks 
on different sensors and perception systems in autonomous vehicles. This work also showed 
machine learning-based possible defensive techniques to prevent the security threat. An overview 
of most of the conceivable assaults against autonomous vehicle software and hardware and their 
prospective consequences is presented in this study.  

1. Introduction 

The integration of artificial intelligence in digital technology is rapidly expanding, with the automotive industry experiencing a 
surge in interest in connected to autonomous vehicles. An Autonomous Vehicle (AV) is a robotic or driverless vehicle that relies on 
sensors, machine learning techniques, complex algorithms, and actuators. These vehicles utilize powerful processors to execute 
software, eliminating the need for human intervention to control the vehicle (Badue et al., 2021). 

Autonomous vehicle’s leverage various technologies like vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2X) commu
nications (Mun et al., 2022) to engage with their environment and operate safely. By sharing information on position, speed, and 
heading with other vehicles, these technologies help predict the vehicle's trajectory and navigate roads and terrains more easily 
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(Chattopadhyay and Lam, 2018). Different types of autonomous vehicles are emerging for transportation, including self-driving cars 
and unmanned aerial vehicles (UAVs) (Jones et al., 2023; Schirmer and Torens, 2022). According to industry reports (Khalid Khan 
et al., 2022), despite the $54 billion global market, only 16 % of consumers feel confident in autonomous vehicles as a secure 
transportation mode (Wong et al., 2021). This lack of trust can be attributed to cybersecurity threats that autonomous vehicles need 
to mitigate. For instance, electronic control units (ECUs) can potentially be hacked (Sugunaraj and Ranganathan, 2022), GPS signals 
spoofed (Pardhasaradhi and Cenkeramaddi, 2022), and sensor values altered (Van Wyk et al., 2020). As a result, the security vul
nerabilities of networked autonomous vehicles are discussed, along with other challenges and difficulties (Wyglinski et al., 2013). 
When compared to conventional vehicles, autonomous vehicle’s communication with other cars and infrastructure renders them a 
much more vulnerable target. Besides, the transportation industry may benefit from the novel traffic behaviors that AV allow, such as 
the use of reservations for controlling intersections to increase road capacity and decrease reaction times (Levin and Boyles, 2019). 
However, the analysis of massive amounts of data required for self-driving cars is vulnerable to adversarial assaults and may generate 
false positives as data volume grows due to the utilization of deep learning algorithms. Moreover, the im-maturity of the technology, 
both in hardware and software, means that it is impossible to ensure the security of AV in all circumstances (Plathottam and 
Ranganathan, 2018; Jafarnejad et al., 2015). 

In addition to the security risks and technical challenges associated with AV, there are also ethical concerns to consider. For 
example, who is responsible if an AV gets into an accident and causes harm? How should an AV be programmed to make decisions in 
potentially life-threatening situations? These questions are still being debated and require further research and discussion (Lin et al., 
2008). Furthermore, there are concerns about the potential impact of AV on employment, as the widespread adoption of this 
technology could lead to job displacement for millions of drivers around the world (Autonomous Vehicle Technology, 2023). As such, 
while the benefits of autonomous vehicles are significant, it is crucial to carefully consider the potential risks, ethical implications, 
and societal impacts associated with their adoption. 

The technology for autonomous and unmanned vehicles has already reached a very advanced stage. Unmanned aerial vehicles 
(UAVs) (Valavanis, 2018) have been used for military reasons for the past three decades, and many current automobiles include 
conscience and advanced driver assistance capabilities that allow them to run independently. Within a few decades, self-driving 
automobiles, unmanned aerial vehicles, flying robots, and other robotic gadgets will be commonplace in our daily lives thanks to 
these breakthroughs in autonomous technology (Stephan et al., 2012). Autonomous vehicles have become popular for performing 
hazardous or labor-intensive tasks in military, business, and government settings due to their ability to carry out tasks effectively and 
safely (Rossiter, 2020). However, with the increasing use of artificial intelligence (AI) in autonomous systems, the risks associated 
with security threats and vulnerabilities have also risen. As these vehicles handle tasks that can affect human lives, they need to have 
the capability to operate securely even when faced with attacks from hackers or malfunctioning gear. 

This paper focuses on the extensive review on works that has been used AI to address these risks and vulnerabilities and ensure the 
secure and efficient operation of autonomous systems. This research also focuses on reducing the security threat of vulnerability of 
autonomous vehicles. Bugs in software and systems should be controlled because hackers are looking for them (Sun et al., 2022). 
There are many ways for hackers to take advantage of flaws in systems, especially in automobiles (Burzio et al., 2018). When a car is 
referred to as 'connected,' it communicates with other equipment, networks, and automobiles (What is an Autonomous Car? – How 
Self-Driving Cars Work | Synopsys, n.d.). Additionally, there are even simpler ways for someone to attack a car that is powered by 
artificial intelligence, in addition to the issues about hacking autonomous vehicles. Policies and laws governing automotive cyber
security can also aid in the prevention of assaults on driverless automobiles (Khan et al., 2021). To be effective, the car sector must 
treat this with the seriousness it deserves. To ensure that artificial intelligence is as secure as possible, it is necessary to include 
cybersecurity in the design and implementation processes from the beginning (Maple et al., n.d.). 

Commercial vehicle-related mobile apps and other mobile applications have significant security risks, as highlighted in Table 1, 
which could result in serious consequences. This underscores the need for automakers and software developers to implement ap
propriate measures to safeguard their applications and systems against these threats. According to previous research findings, there 
are several security problems in current commercial vehicle-related mobile apps and other mobile applications. Mobile apps for car 
diagnostics are becoming increasingly popular, and various companies are taking advantage of the growing demand (Swan and 
Fischer, 2015). Unfortunately, the security issues in this area will put users at risk of death in some cases. Table 1 (Ryan et al., 2020; 
Sripada et al., 2021; Hägele et al., 2016; Wolcott and Eustice, 2014; Lampe and Meng, 2023; Zhang et al., 2022a) provides a summary 

Table 1 
Security Threats in Automotive Applications: Percentage of 
Vulnerabilities and Risks.    

Applications Percentages  

Tele No. Leakage  21.1 % 
URI Exposure  54.6 % 
Component Exposure  57.3 % 
Implicit Intent  6.1 % 
Exposed Access Privilege  42.3 % 
Repackage  42.3 % 
Code Confusion  73.4 % 
Unsecured  76.5 % 
Man-in-the-Middle Attack  60.1 % 
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of the security threats present in automotive applications, along with the percentage of vulnerabilities and risks associated with each 
threat. The table highlights several significant security risks, including Unsecured applications (76.5 %), Code Confusion (73.4 %), 
Man-in-the-Middle Attacks (60.1 %), and URI Exposure (54.6 %). These risks could potentially result in serious consequences, such as 
data breaches, unauthorized access to sensitive information, and even physical harm to drivers and passengers. The table underscores 
the need for automakers and software developers to take security seriously and implement appropriate measures to safeguard their 
applications and systems against these threats. 

According to (Le et al., 2018), vehicle diagnostic apps can pose a security risk due to multiple vulnerabilities found in commonly 
used apps. These vulnerabilities may allow attackers to access the user's driving profile and automobile information, potentially 
leading to identity theft and other malicious activities. It is important to note that these security risks are not unique to autonomous 
vehicles and are a common risk for all cars with an OBD interface (Koscher et al., 2010). Therefore, developers of vehicle diagnostic 
apps must prioritize security measures to protect user’s sensitive information. 

From Fig. 1, we got the basic components and working procedure of an autonomous vehicle, which incorporates diverse sensors 
positioned at various points of the car to create and supervise a map of the surrounding environment. The autonomous vehicle will be 
declared safe and successful if it can make an accurate map as well as react appropriately based on the surrounding situation. A radar 
sensor (Nagy, 2023) is used to detect the specific location of nearby vehicles. Track other vehicles, road signs, and pedestrians all are 
detected by the video camera. By bouncing light pulses off the surroundings, the Lidar (Wolcott and Eustice, 2014) sensors calculate 
distances and detect lane markings as well as road edges. An ultrasonic sensor (Yang et al., 2023) is placed in the wheel to detect both 
curbs and other vehicles. The observation of the sensor will be provided to the software which will process all the input, Then, it will 
generate an instruction that will be sent to the car’s actuators. The actuator will perform the given instruction such as control 
steering, braking, or acceleration. 

2. Related works 

This section presents the author’s discussion about the different methods and systems used in vehicles for navigation, obstacle 
detection, control, etc. The first sensor discussed is the GPS sensor, which uses signals from GPS satellites to determine the vehicle's 
location. However, due to the open access to information, hackers can manipulate or mislead the GPS data to send misleading 

Fig. 1. Basic components of an autonomous vehicle.  
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directions or affect the vehicle's course, compromising passenger safety and security. The second sensor discussed is the Light 
Detection and Ranging (LiDAR) technology, which uses laser pulses to create a 3D representation of the environment, enabling 
localization, detection, and avoidance of obstacles. 

The third sensor discussed is the Inertial Measurement Unit (IMU), which uses gyroscopes and accelerometers to provide in
formation on the vehicle's speed, acceleration, and orientation. Finally, the Electronic Control Unit (ECU) and the OBD port are 
discussed. Attackers can re-flash the ECU with modified firmware to induce harmful and unanticipated activities. At the same time, 
the OBD port provides information about the vehicle's malfunctions and performance through communication with the ECUs. In the 
methodology section, this study shows the state of the art in referred research works on autonomous vehicles in Table 3. 

2.1. GPS sensor 

Global Positioning System abbreviated as GPS (Al-Turjman, 2022). To identify and navigate a vehicle, GPS data may be used with 
high precision. Increased satellite count in the public eye was used to overcome challenges in obtaining GPS data. Due to open access 
to information, hackers can manipulate or mislead the data to send misleading directions or affect the vehicle's course. Passenger 
safety and security were compromised as a result of this. GPS fooling (Jiang et al., 2022) and jamming (Wang et al., 2023) are terms 
used to describe the act of sending false or misleading information to GPS satellites. As the GPS sensors are set to accept greater 
signals, the power of the fake signal grows, and the vehicle's location progressively deviates from the targeted goal (Madhu and 
Vijaya Kumar, 2022). The mathematical Eqs. (1–3) (Liu et al., 2022) for GPS sensors can be expressed as follows: 

=d c t t1 *( 1 0) (1)  

=d c t t2 *( 2 0) (2)  

=d c t t3 *( 3 0) (3)  

Here, d d1,2, 3 are the distances between the receiver and three GPS satellites, t0 is the time when the signal was transmitted from 
the GPS satellites. t t t1, 2, 3 are the times when the signal was received by the GPS receiver and c is the speed of light. 

Using the distances d d1, 2, and d3, the GPS receiver can determine its position using trilateration. The position (x, y, z) can be 
calculated by solving the following equations: 

+ + =x y z d( 1)2 2 2 2 (4)  

+ + =x x y y z z d( 2) ( 2) ( 2) ( 2)2 2 2 2 (5)  

+ + =x x y y z z d( 3) ( 3) ( 3) ( 3)2 2 2 2 (6) 

Where: x y z( 2, 2, 2) and x y z( 3, 3, 3) are the coordinates of the other two GPS satellites. Solving this system of equations gives the GPS 
receiver's position in three-dimensional space. 

2.2. Light detection and ranging 

Localization, detection, and avoidance of obstacles are all possible using Light Detection and Ranging (LiDAR) technology (Alaba 
and Ball, 2022). The distance an item is from the vehicle is deter-mined by the time it takes for the information to travel to and from 
the vehicle. Assume the object is spotted if the hacker sends a message to the scanner with the same frequency. It slows or halts the 
vehicle's movement (Zhang et al., 2023). The mathematical equation for LiDAR can be expressed as follows: 

=d ct
2 (7)  

Here, d is the distance from the LiDAR sensor to an object in the environment. c is the speed of light, t is the time it takes for the 
laser pulse to travel from the LiDAR sensor to the object and back. The equation is divided by2 because the distance traveled by the 
laser pulse is the round-trip distance, and we only need to know the one-way distance. 

By measuring the time, it takes for the laser pulse to travel to an object and back, LiDAR can create a 3D representation of the 
environment. As shown in Fig. 2, by sweeping the laser over a range of angles and distances, LiDAR can create a point cloud, which is 
a collection of 3D points that represent the surfaces of objects in the environment. This point cloud can be used for various appli
cations, such as mapping, autonomous navigation, and environmental monitoring. 

2.3. Inertial measurement unit 

Gyroscopes and accelerometers work together to provide information on the vehicle’s speed, acceleration, and orientation 
(Kanwal et al., 2023). Changes in environmental dynamics such as these researchers also track a gradient. It is possible to alter or 
ignore the sensor data to account for the road's gradient. It causes the car to proceed at a slower speed on the incline roads, which in 
turn slows down the vehicles behind it (Kuschan et al., 2022). Detection of lanes, traffic signs, headlights, obstacles, and other 
dangers may all be accomplished with the use of video cameras. The use of high-beam torches or the headlights of the opposing 
vehicle can partially disrupt the operation of cameras. Erroneous or no detection of objects may be introduced as a safety concern. 

T. Islam, Md. A. Sheakh, A.N. Jui et al.                                                                                                Journal of Economy and Technology 1 (2023) 242–258 

247 



2.4. Electronic control units security 

Modern vehicles have over 100 electronic control units (ECUs) (Huang and Chen, 2022) that control various subsystems through 
sensors and actuators. These control units are designed with proprietary code, making them an attractive target for attackers looking 
to induce harmful and unanticipated activities. Attackers may re-flash the ECU with modified firmware to alter its functionality, 
tamper with ECU memory and security keys, and update the ECU firmware (Mayilsamy et al., 2022) using hashing methods and 
verification of the ECU firmware program and its upgrades. Full access attacks involve physical access to the ECU's external interface. 

2.5. The onboard diagnostics security 

The onboard diagnostics (OBD) port can be found in almost all vehicles and is used to gather diagnostic data (Saeed et al., 2023). 
The OBD port communicates with the ECUs using the controller area network (CAN) bus. Attackers may exploit vulnerabilities in the 
CAN protocol (Hoppe et al., 2011) or the ECM itself to gain unauthorized access to the vehicle's OBD connector. It's a portable device, 
similar to a USB flash drive, that connects to the vehicle's port under the dashboard, just across from the adjacent driver's seat either a 
wired USB port or wireless Bluetooth connection to the PC. PCs may communicate with the vehicle's electronic control units (ECUs) 
and exchange data between the two (Yan, 2016). The exploitation of this connection might lead to harmful data being sent into the 
vehicle's network (Almeida et al., 2002). For example, hackers can use a "CAN bus sniffer" to intercept and analyze messages sent over 
the CAN network, or they may use replay attacks or denial-of-service attacks to manipulate messages or disrupt the vehicle's normal 
operation (Lampe and Meng, 2022). To prevent such attacks, modern vehicles may use security measures such as encryption or digital 
signatures to secure the CAN protocol (Almeida et al., 2002) and tamper-resistant housings and secure boot mechanisms to protect 
the ECM from unauthorized access. 

2.6. Exploring the threats of cyberattacks on connected cars 

Connected car firmware upgrades have been a major update. Without sufficient safety and security improvements, these changes 
are unsafe. serious cyber assaults might disclose confidential information from the car (Bella et al., 2023). In this way, hackers may 
inject malware and take over the connected cars' firmware by exploiting security flaws in the system. There are two ways in which 
exploitation can take place which physical access and remote access. 

Physical access - The physical layer is now directly connected to the ECUs, which raises the risk of cyberattacks. Hackers can 
directly exploit the sensor data, control, and communication components. Vehicle electronic modules can be targeted directly or 
indirectly, or the physical layer can be overloaded (Kumar et al., 2018). 

Remote access- Different connectivity, such as Wi-Fi, Bluetooth, and 4G, can be used for remote access. The CAN bus is directly 
linked to the ECUs, which is not what the manufacturer wanted (Singh et al., 2022). Malware or virus files can be injected into the 
firmware while the device is connected to the internet. Neither the threats nor the measures to be taken to eliminate them are clear to 
automakers. Even the automobile manufacturers themselves are unsure about the best course of action to take in the wake of the 
financial crisis (Saez-Perez et al., 2023). 

When it comes to data security and privacy, adversarial attacks aim to manipulate the training data distribution to alter para
meters in machine learning models, degrading subsequent classification performance. These causative attacks target the training 
phase rather than already trained classifiers. Counterintuitively, adversarial samples and training data can expose sensitive in
formation or induce misclassifications in machine learning models, which are the target models in this context. 

These types of attacks can be broadly classified into two categories based on the attacker's knowledge - white-box and black-box 
attacks (Suryadi, 2023; Liu et al., 2016) A white-box attacker has full access to download and analyze the target models and training 
data. In contrast, a black-box attacker only knows the input/output patterns of the target models. Without a doubt, such attacks on 
machine learning models can violate privacy and endanger lives. 

As an example, Sharif et al (Suryadi, 2023). showed an attack against facial recognition systems by having the attacker wear 
specially crafted glasses. This demonstrated the real-world feasibility and potential consequences of such white-box attacks. 

Fig. 2. Example of LiDAR point cloud.  
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Additional work (Liu et al., 2016) proved that transferable adversarial samples could be generated using ensemble learning, in
dicating that output patterns from one model can effectively attack others in a black-box manner. 

Table 2 analyzes attacking techniques for autonomous vehicles, with advantages and disadvantages. Techniques include opti
mization-based, FGSM (Zhang et al., 2022a), iterative least-likely class, DeepFool (Moosavi-Dezfooli et al., 2016), and Jacobian-based 
saliency maps (Wang et al., 2022). The optimization method has minimal impact but is slow and doesn't scale. FGSM is faster but the 
perturbation may not be optimal. Iterative least-likely class fine-tunes FGSM but more iterations impact performance. DeepFool is 
effective but assumes linearity. Jacobian-based saliency balances quantity and quality but needs feed-forward DNNs and is com
putationally complex for large datasets. 

3. Methodology 

The majority of this study is based on previously published works. When it comes to research, it all comes down to the subject at 
hand. Additionally, we assimilate data and display it to our audience in a unique and inventive manner. It is not sufficient to offer a 
basic overview of the study; specific explanations are required. As a result, to get a complete grasp of the subject, it is necessary to 
familiarize yourself with its several sub-fields. To guarantee that we address all pertinent concerns in this study, we have addressed 
them all. The findings of the research are put to use for a variety of purposes, including testing. As a result, we now have the 
information we need to move on with our investigations. The findings of the research are put to use for a variety of purposes, 
including testing. Though this is a Review work that’s why in this work, data has been collected from the previously published work.  
Table 3 shows the core methodology. This table presents information about the refereed research work of this study. 

Currently available machine learning defense mechanisms are discussed in this section, along with their merits and limitations. 
Machine learning security can be supported by a range of different tactics at various points in the lifecycle of the machine learning 
system. When adversarial training, defense distillation, and the RONI technique (Tobaruela and Rodríguez, 2017) are effective in 
defending against attackers during the training phase, the ensemble approach and the ensemble approach are useful for security 
during the testing or inferring stages. When it comes to data security and privacy, there are two important approaches: homo
morphism encryption and differentiation. 

3.1. The RONI technique 

The RONI (Reactive Obstacle Navigation with Integral Action) technique (Tobaruela and Rodríguez, 2017) is an approach used in 
AV control to avoid obstacles while navigating a path. The technique uses information from sensors, such as LIDAR, radar, or 
cameras, to detect obstacles in the vehicle's path and then adjust the vehicle's trajectory to avoid them. The RONI technique is an 
extension of the proportional controller, which relies on the difference between the desired and actual states of a system to calculate 
the control action. The RONI technique adds an integral component to the controller, which allows the system to adjust for any 
steady-state error that may exist in the system (Mouad et al., 2012). The integral component integrates the error over time, resulting 
in a control action that is proportional to the ac-cumulated error. This technique can be expressed mathematically in (8) (de Lope and 
Maravall, 2003) as: 

= +u t Kp e t Ki e t dt( ) * ( ) * ( ) (8)  

Fig. 3. Autonomous vehicle with RONI - LIDAR obstacle detection.  
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Here, u t( ) is the control action at time t, Kp is the proportional gain, Ki is the integral gain, e t( ) is the error between the desired 
and actual states of the system and e t dt( ) is the integral of the error over time. 

For example, let's consider an autonomous vehicle that needs to navigate through a cluttered environment. The vehicle's LIDAR 
sensor detects an obstacle in its path, and the RONI technique is used to adjust the vehicle's trajectory to avoid the obstacle. The error 
between the desired and actual states of the vehicle is calculated, and the control action is determined using the RONI equation. The 
proportional component of the control action adjusts the vehicle's direction, while the integral component ensures that the vehicle 
reaches its desired state. This technique is an effective way to control an autonomous vehicle while avoiding obstacles in its path. By 
using the proportional and integral components of the controller, the vehicle can adjust its trajectory to reach its desired state while 
avoiding obstacles in real-time. 

Fig. 3 shows the visualization of an autonomous vehicle traveling down a road, which is equipped with a LIDAR sensor that is 
constantly scanning the surrounding environment. The LIDAR sensor detects an obstacle in the vehicle's path and sends this in
formation to the vehicle's control system. 

The control system calculates the error between the desired trajectory of the vehicle and the actual trajectory, taking into account 
the obstacle that was detected by the LIDAR sensor (Wolcott and Eustice, 2014). The RONI technique is used to determine the control 
action that the vehicle should take to avoid the obstacle and stay on course. The proportional component of the control action adjusts 
the vehicle's direction, causing it to steer away from the obstacle (Alaba and Ball, 2022). The integral component of the control action 
helps to correct any steady-state error in the system, ensuring that the vehicle eventually reaches its desired trajectory. Over time, the 
vehicle's control system continues to monitor the environment and adjust the vehicle's trajectory as necessary, using the RONI 
technique to ensure that the vehicle stays on course and avoids obstacles. 

3.2. Cyber attacks and strategies 

A high-level representation of a cyber-attack is displayed. Although there are several more subtle processes that take place 
between the steps outlined above, there are a few that are worth mentioning (reconnaissance, exploit, control, or data exfiltration) 
(Khan et al., 2022). A broad number of assault strategies are available to the adversary as a result of this, each of which can be 
adapted to the peculiarities of the situation at hand. There is no doubt that cyber-attacks are incredibly difficult to execute suc
cessfully. 

Fig. 4 shows the cyber-attack procedure. A single machine-learning method can perform several subtasks with the same results. 
Object detection and position and movement prediction using regression algorithms are examples of such applications. 

In Amid the rapid development of self-driving vehicles (Kockelman et al., 2016), several firms have encountered difficulties in 
protecting the CAV system from attacks, which has led to various issues on the road. System security is the subject of several studies. 
However, there is still room for improvement in the algorithm to achieve high performance. We applied deep learning techniques to 
real CAV datasets in this study. 

3.3. CAN intrusion detection systems: recent advances and future directions 

This section discusses the most recent advancements in the field of CAN intrusion detection systems, used an inception ResNet 
model (Tseng et al., 2023) to train the data from the vehicle network traffic to detect intrusion assaults on the network. Long-term 
memory (Robin et al., 2023), neural networks (Legaard et al., 2023), support vector machine (Qin and Li, 2023), the naive bayes 
approach (Islam et al., 2022a), the k-nearest neighbors model (Memiş et al., 2022), and decision tree (Islam et al., 2023) algorithms 
have all been tested and compared to the findings of this study. Zhang et al., developed an intrusion detection method to safeguard 
the CAN bus from being attacked (Zhang et al., 2022b). In order to message of the attack, the scientists used a hybrid model that 
included adaptive gain with a gradient descent momentum. Liang et al. used deep neural networks to detect intrusions into the CAN 
bus message frame, which they then monitored (Liu et al., 2021). The accuracy of this system has been demonstrated to be close to 98 
% when the deep belief network function is used as the deep learning model during the training phase. A network traffic analysis 
system, such as the one implemented in the CAN bus by Hoppe et al. (Hoppe et al., 2011), intended for the purpose of discovering 
fresh patterns in network packets and comparing them with patterns IDS system, according to the researchers. When compared to the 
traditional system, they were able to achieve extremely high accuracy levels. Taylor et al (Taylor et al., 2016). built an LSTM model to 
detect CAN bus assaults in order to protect the network. Ye et al (Taylor et al., 2016; Ye et al., 2021). developed a hierarchical 

Fig. 4. Autonomous vehicle cyber-attack procedure overview.  
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temporal memory strategy in anomaly categorization system. Many machine learning and Deep Learning techniques have been 
applied to predict CAN bus invasions (Hoppe et al., 2011). Deep neural networks applied Convolutional Neural Networks (CNN) 
(Islam et al., 2022b), and other techniques have been used to do so (CNNs). 

3.4. Challenges in autonomous driving: object misclassification 

Machine learning is being utilized to construct driver assistance systems that offer enhanced levels of perception and awareness of 
their environment, including self-driving automobiles. Specifically, camera-based mechanisms to identify and categorize objects. 
There have been notable progressions in LiDAR (Bilik, 2023) and radar technology. 

Undoubtedly, one of the most challenging aspects of autonomous driving is the misclassification of objects (Feng et al., 2022). The 
vehicle's computerized control system collects and analyzes all data its numerous sensors obtain. In certain instances, an automobile 
may erroneously perceive a stop sign as a less consequential traffic sign, such as a speed limit indicator, owing to a disparity in a small 
number of pixels within the visual representation generated by the vehicle's camera technology. It is possible for a pedestrian to be 
misidentified as a stationary object, such as a lamp post, by the system. Furthermore, the system may be unable to anticipate the 
pedestrian's future movements. Fig. 5 depicts the defensive techniques employed in machine learning. 

Machine learning can contribute to the safety of a vehicle by preventing system failures that could result in an accident. To 
examine onboard data, it is possible to employ machine learning. Data on the motor temperature, battery charge, oil pressure, and 
coolant levels are collected and analyzed by the system to provide an overall picture of the vehicle's health and motor performance to 
the driver. Indicators that indicate a problem with the car may alert the owner as well as the rest of the system that maintenance or 
repair is required. 

By evaluating the data produced by a vehicle's electronics, machine learning can also ensure that the electronics do not fail and 
cause an accident. For sensors like cameras, lidar, and radar to be effective in providing a safe cruise, they must be adequately 
maintained. 

4. Empirical investigations and analysis 

According to, a taxonomy of security threats towards machine learning was proposed from three different perspectives, namely, 
the influence on classifiers, security violations, and attack specificity, as depicted in Fig. 6. which illustrates the taxonomy of security 
threats towards the autonomous technique. Security has an impact on classifiers from the perspective of there being two main types of 
dangers to machine learning. After in-depth analysis, this research finds key sensors and attacks that are responsible for autonomous 
vehicles. 

4.1. Ultrasonic sensor 

Sensors are used by autonomous vehicles to measure road conditions to make real-time decisions, and their security is heavily 
dependent on these sensor’s reliability. Ultrasonic sensors are used to detect obstacles (Carullo and Parvis, 2001). Obstacles are 
detected by releasing ultrasounds and examining their reflections. To estimate the distance of an object, the ultrasonic sensor releases 
ultrasonic pulses and calculates the time of receiving the reflected pulses. The mathematical equation is – 

=d t v0.5 P s (9)  

Here, tp represents the ultrasonic pulses propagation time. In the air, the sound velocity is defined by using vs At C m s( 200 343 / ). 
Threat: Intruders can use spoofing, adaptive spoofing, and jamming attacks on the ultrasonic sensors. 

4.2. Random spoofing attack 

In this attack, previously recorded signals will be replied randomly at the correct time (Cao et al., 2022). At this moment, the 
received signals will not be canceled. This type of attacks can only fool the sensors into reporting a fabricated obstacle that is near 
than any actual barriers. We can write the sensor signal received in random spoofing attack in the following manner. 

Fig. 5. Machine learning defense strategies.  
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= +
=

T T( ) * ( )i i
n

N

j n0
1 (10)  

Here, Ψi(τ) defines the cycle of the echo which is received at τ0.Ψ*j (τn) represents the spoof signal which is replayed on the basis 
of the previous cycle (j) which is achieved after Tn time. All spoof signals are counted and stored in the N. 

4.3. Jamming attack 

In this attack, the ultrasounds will be emitted continuously (Mpitziopoulos et al., 2009). We can write the received signal in this 
attack in the following manner. 

= +T A t( ) cos ( )i i

T

0
0

0

(11)  

Here, the amplitude of the jamming is denoted by A and frequency is defined by the ω. 

4.4. Adaptive spoofing attack 

In The aim of this attack is to generate the non-existing barriers. We can define the signal which is received under this attack as 
follows: 

= + +T T T( ) ( ) * ( )i i i i0 0 1 (12)  

Here, the cancellation of the signal is denoted by and the time delay is denoted by the . 
Solution: To improve the protection of ultrasonic sensors as well as autonomous vehicles, the authors proposed two types of 

defense techniques- 
Physical Shift Authentication (PSA): Despite ultrasound’s drawbacks, PSA (Xu et al., 2018) permits a sensor to deliver random 

probing signals. As a result, it can reliably detect obstacles by determining whether the obtained echoes are from the sensors or not. 
Multiple Sensor Consistency Check: At the system level, MSCC (Shu et al., ,) allows multiple sensors to work together to tackle 

more advanced attacks. It can identify spoofing attacks, calculate the distance in a resilient manner, and localize both real and 
attackers’ obstacles. By using two assistance sensors, MSCC can improve its detection rate. 

4.5. Threats in localization and navigation technologies for autonomous driving 

Technologies of localization and navigation are the root elements of navigation as well as the planning of routes. By exploiting the 
loopholes of these technologies, the attacker can manipulate the navigation of autonomous vehicles. GPS, INS, and HD maps are the 

Fig. 6. Security threats taxonomy for autonomous techniques.  
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most common localization and navigation technologies. The following attacks are liable for the navigation technology threats.  

• GPS spoofing Attack: The main goal of this attack is to manipulate the navigation (Tippenhauer et al., 2011). There are two steps 
in this attack. At first, false signals of GPS are created that are identical to legitimate ones but have sufficient power to replace the 
legitimate GPS signals. Then it changes navigation SMS or shifts the arrival time of the signals to handle the navigation.  

• GPS jamming attack: This attack can be done by sending out a huge amount of radio noises on the GPS frequency (Ashourian and 
Sharifi-Tehrani, 2022). Furthermore, making and using a GPS jammer is very simple.  

• GPS replay attack: The primary goal of GPS replay attack is to destroy the encryption as well as authentication security. It is one of 
the dangerous attacks (Aissou et al., 2022).  

• GPS software attack: This attack is done by finding software loopholes (Moukahal et al., 2022).  
• Message falsification attack: The aim of this attack is to upload huge amount of false message in order to update the HD maps. 

4.6. GPS signal security 

Because of unencrypted and unauthorized signals, Civil GPS (Mitch et al., 2011) is easy to affect by jamming. The possible 
solutions are –  

• One viable method for preventing interference is to optimize the signal process of GPS.  
• To make safe the GPS signals from spoofing attack, encrypt the signals of GPS by using private key can be the solution.  
• Aside from improving GPS security, it is also essential to enhance the GPS terminal’s ability to recognize false signals and collect 

real ones. To accomplish this, six methods can be used. They are front-end filtering, radio frequency interference detection, anti- 
interference filtering, integrated navigation, space-time adaptive and antenna enhancement. To improve the protection of HD 
maps, three methods can be used.  

1. We must ensure the data collection’s accuracy.  
2. It is essential to create a safe update framework.  
3. By using cloud services, HD maps will be updated. It is necessary to use safe cloud services. 

4.7. Causative attack 

To put it another way, it means that adversaries can alter the training data distribution, resulting in parameter changes in learning 
models that affect subsequent classification performance. This type of attack does not aim to alter classifiers that have already been 
trained (Gallagher et al., 2022). While it may seem counterintuitive, hostile samples and training data can be used to induce mis
classifications or expose sensitive information in learning models. 

4.8. Attack on integrity 

It aims to enhance the number of false negatives of existing classifiers when it comes to identifying dangerous samples. For (b) an 
Availability attack, see (a). Instead, such an approach will increase the number of classifiers that identify harmless samples as false 
positives. (c) A breach of personal privacy. Because enemies may access training data and learning models, this means that they can 
gain sensitive and confidential information. Security threats to machine learning can be divided into two categories, based on attack 
specificity: An attack that is specifically tailored to the target. Classifiers' performance on a single sample or subset of samples is 
specifically targeted for degradation. Untargeted as-sault. The classifier is unable to distinguish between different types of samples 
because of this attack. In the field of autonomous security, a new battleground has emerged: secure deep learning. According to 
earlier studies, the security of DNNs is jeopardized by their counterintuitive nature. Even if adversarial samples are taken into 
consideration during model training and learning algorithms are strengthened, none of these strategies are sufficient to solve the 
problem outlined above. From this research, we found three vital aspects of security threats of an autonomous vehicle. 

4.9. Firmware 

ECU firmware (Chen et al., 2022) may be extracted and decoded by hackers. Additionally, this enables for the extraction of 
sensitive data such as encryption keys to be discovered in the firmware. It's possible that the vehicle's intellectual property, such as 
fuel economy and battery health, might be exposed if the vehicle's firmware is extracted. The safety of the system depends on the 
integrity and protection of these data. 

4.10. Advanced/autonomous vehicle systems (semi and completely autonomous) 

Cars equipped with high-tech connected car systems like radar, cameras, parking assistance systems, and collision-prevention 
systems can be used to bridge the gap between a cyber-attack and a physical one. These systems can be hacked and utilized to 
compromise the safety of a vehicle. As a result, verifying their integrity is crucial for the overall security of the vehicle. 
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4.11. Wireless an Infotainment system 

Wi-Fi, Bluetooth, Near Field Communication, and mobile Internet technologies give a plethora of additional entry points into the 
connected car and should be thoroughly scrutinized for flaws and vulnerabilities before implementation. The audio head unit, 
navigation system, USB, CD/DVD, and other physical interfaces on the car are all easily accessible, providing a possible entry point 
for hackers to get direct access to onboard components and firmware and compromise the vehicle's security. 

5. Discussion 

When a car is self-driving, it does not require the assistance of a human driver to makeover around its surroundings. Human 
passengers are not required to be present at any point during the process of taking control of the vehicle. Self-driving automobiles do 
not require the assistance of a human driver to traverse their environment. Human passengers are not necessary at any point during 
the process of taking control of the vehicle. Table 4 shows the analysis between existing and previous defensive techniques. 

At various points in the machine learning lifecycle, a variety of defense mechanisms can be employed to provide security as
sistance. There are a number of useful techniques for ensuring data security and privacy, such as RONI for defending against attackers 
during the training phase, defensive distillation, the ensemble approach for testing, and differential confidentiality and homomorphic 
encryption for inferring. This research suggests some vital ways that can protect your autonomous vehicle.  

• Make a strong password for your vehicle. If your car came with a default password, hackers may easily guess it. In 2023, for 
example, the default password of thousands of automobiles' GPS tracking applications was "123456."  

• Rather than relying on a single network, cities could set up several. Connected automobiles are more vulnerable to cyberattacks if 
they rely on a single network. Cities may drastically lessen their vulnerability by establishing several tiny networks.  

• When a car's software is up to date, it will have the most recent updates that defend the vehicle against known risks.  
• When it comes to installing applications in automobiles, vehicle manufacturers should guarantee that the app developers are 

focused on making sure that the programs are secure prior to their installation.  
• Using a technique called "GPS spoofing," it is possible to take control of a vehicle's GPS system by disabling the GPS signal. A radio 

signal is used by a bad actor to disrupt a GPS locating system. It is possible to stop an automobile in its tracks by deceiving it into 
thinking it has arrived at its destination via spoofing, for example. This is why having GPS turned on just when necessary is important.  

• The enormous amount of complexity that underlies autonomous automobiles can make it harder to detect flaws, whereas a regular 
vehicle could be easier to identify. As a result, drivers should become comfortable with their self-driving cars before taking to the 
road. 

Self-driving autos will eliminate a substantial source of human error since they are incapable of making mistakes in judgment. 
According to a study, self-driving cars might potentially save the lives of 29,447 individuals every year by preventing traffic accidents 
from occurring. Following the resolution of legislative and technological obstacles, it is possible that around 15 % of new automobiles 
delivered in 2030 will be totally self-driving. Commercial availability of fully driverless vehicles is unlikely to emerge before 2020, 
according to industry analysts. According to current projections, self-driving cars will generate more than 300 gigabytes of data each 
year in the future. The continuous progress of safety technology makes it possible to develop complex software-defined autonomous 
systems capable of navigating roadways with little to no human input. In the next four to five years, autonomous vehicles are 
expected to be commonplace on U.S. highways and highway interchanges. 

Table 4 
Analysis between existing and previous defensive techniques.      

References Defensive Techniques Advantages Disadvantages  

(Li and Chan, 2014) Reject on Negative 
impact (RONI) 

When hostile samples are included into training 
data, it effectively removes them. A large variety 
of classification algorithms can be used. 

It is a lack of thorough testing in a 
wide range of applications. 

(Xu et al., 2021) Adversarial training It's simple to learn and put into practice. It can be 
used with a wide range of classification 
algorithms. 

Adversarial samples used in the 
training phase determine the 
success of this technique. 

(Goodfellow et al., 2014; 
Papernot et al., 2016) 

Defence distillation Reduced sensitivity to input perturbations results 
in a smoother DNN model. It enhances the DNN's 
ability to generalize. It effectively reduces the 
impact of FGSM-created hostile samples. 

JSMA-created adversarial 
samples are too easy to defeat. 

(Carlini and Wagner,; Sengupta 
et al., 2019; Tramèr et al., 
2017) 

Ensemble method Multiple classifiers or defence mechanisms can 
be easily integrated. 

With respect to adversarial 
samples, it does not have the 
transferability that is required. 

(Abbasi and Gagné, 2017; 
Tschantz et al., 2011; 
Rubinstein et al., 2009) 

Differential privacy It safeguards the confidentiality of training data. 
In this way, the privacy of algorithms for learning 
is safeguarded. 

A classifier's performance on 
authentic data is affected by this. 

(Damgård et al., 2012) Homomorphic 
encryption 

It protects data confidentiality and security in the 
cloud. 

As a result, additional processing 
time is required. 

T. Islam, Md. A. Sheakh, A.N. Jui et al.                                                                                                Journal of Economy and Technology 1 (2023) 242–258 

254 



Automation, Machine Learning is at the heart of big data, the Internet of Things (IoT), cloud computing, and artificial intelligence. 
There has been a lot of interest in security risks and their accompanying defense methods, both in academics and in industry. 
Research into machine learning security risks and defenses shows the following patterns, according to the available literature: 
Machine learning is under attack from a variety of new risks at any given time. There have been several frameworks, algorithms and 
optimization mechanisms developed, but research into the security of learning models and algorithms is only beginning. Researchers 
are increasingly looking on the security of AI-based decision systems in hostile situations. It is expected that a defender would become 
increasingly concerned about the security of decision systems as the number of machine learning-related security incidents rises. 
There is a new battleground in machine learning security: secure deep learning. The security of DNNs is compromised by their 
counterintuitive nature, according to previous research. Even if adversarial samples are considered during model training, and 
learning algorithms are made more resilient, none of these methods are strong enough to address the problem described above. 

In this study, authors did a comprehensive survey on security issues of an autonomous vehicle. Machine learning security concerns 
have been re-examined in terms of the training and testing/inferring phases. Security assessment mechanisms, countermeasures 
during testing, and data privacy and security are some of the existing machine learning defence systems that have been grouped 
together. The quickly changing nature of technology and the associated security risks, which can make it challenging to stay current 
with the latest threats and vulnerabilities, is one of the main issues. Research in this field necessitates knowledge of both computer 
science and transportation engineering, which presents another obstacle. Large datasets and testbeds are also required to effectively 
assess the efficacy of machine learning defensive strategies. To address these issues, researchers should concentrate on following the 
most recent advancements in the field, interacting with leaders in adjacent fields, and creating and utilizing extensive datasets and 
testbeds to accurately assess the usefulness of their suggested solutions. To do successful research in this field, one will also need a 
solid grasp of cybersecurity principles, machine learning methods, and transportation engineering concepts. 

6. Conclusions 

In the coming years, there's a considerable probability that autonomous vehicles will have a significant impact on the economy 
and society. In the United States alone, lower crash rates and more efficient travel time might result in an annual social benefit of 
more than $750 billion due to reduced crash rates and increased efficiency in travel time usage. Automatic vehicles (AVs) have the 
potential to cut carbon emissions by improving vehicle energy efficiency; however, the increased use of road automobiles may 
outweigh this gain. Additionally, it is possible that this will have a negative impact on the positive impact that AVs could have on 
traffic. It is vital to consider options such as car sharing, flexible work schedules, and telecommuting in order to make the most of the 
potential benefits of autonomous vehicles. In this work, using a review of machine learning approaches, we conducted a thorough 
survey on security issues. Security concerns to machine learning have been re-examined in terms of the training and testing/inferring 
phases. Furthermore, we have grouped existing machine learning defence systems into security assessment mechanisms, defence 
during training, countermeasures during testing, and data security and privacy. All these repercussions are the result of the wide
spread use of audio-visual technology. Trust in the system will be based on aspects such as the moral concerns that were considered 
when developing the algorithms that are used in antivirus technologies, as well as the cybersecurity components and the overall 
system reliability. The most efficient application of this new technology needs tight collaboration across a variety of AV disciplines 
and industry players. We intend to go on with this research in the future by putting our findings into action. The outcomes of this 
study will be included in our forthcoming project work. We will decrease the critical factors contributing to an autonomous vehicle's 
vulnerability and security danger. 
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